Error-pooling-based statistical methods for identifying novel temporal replication profiles of human chromosomes observed by DNA tiling arrays

نویسندگان

  • Taesung Park
  • Youngchul Kim
  • Stefan Bekiranov
  • Jae K. Lee
چکیده

Statistical analysis on tiling array data is extremely challenging due to the astronomically large number of sequence probes, high noise levels of individual probes and limited number of replicates in these data. To overcome these difficulties, we first developed statistical error estimation and weighted ANOVA modeling approaches to high-density tiling array data, especially the former based on an advanced error-pooling method to accurately obtain heterogeneous technical error of small-sample tiling array data. Based on these approaches, we analyzed the high-density tiling array data of the temporal replication patterns during cell-cycle S phase of synchronized HeLa cells on human chromosomes 21 and 22. We found many novel temporal replication patterns, identifying about 26% of over 1 million tiling array sequence probes with significant differential replication during the four 2-h time periods of S phase. Among these differentially replicated probes, 126 941 sequence probes were matched to 417 known genes. The majority of these genes were found to be replicated within one or two consecutive time periods, while the others were replicated at two non-consecutive time periods. Also, coding regions found to be more differentially replicated in particular time periods than noncoding regions in the gene-poor chromosome 21 (25% differentially replicated among genic probes versus 18.6% among intergenic probes), while such a phenomenon was less prominent in gene-rich chromosome 22. A rigorous statistical testing for local proximity of differentially replicated genic and intergenic probes was performed to identify significant stretches of differentially replicated sequence regions. From this analysis, we found that adjacent genes were frequently replicated at different time periods, potentially implying the existence of quite dense replication origins. Evaluating the conditional probability significance of identified gene ontology terms on chromosomes 21 and 22, we detected some over-represented molecular functions and biological processes among these differentially replicated genes, such as the ones relevant to hydrolase, transferase and receptor-binding activities. Some of these results were confirmed showing >70% consistency with cDNA microarray data that were independently generated in parallel with the tiling arrays. Thus, our improved analysis approaches specifically designed for high-density tiling array data enabled us to reliably and sensitively identify many novel temporal replication patterns on human chromosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Problem-based learning for health improvement: practical public health for every professional

Statistical analysis on tiling array data is extremely challenging due to the astronomically large number of sequence probes, high noise levels of individual probes and limited number of replicates in these data. To overcome these difficulties, we first developed statistical error estimation and weighted ANOVA modeling approaches to high-density tiling array data, especially the former based on...

متن کامل

Double error shrinkage method for identifying protein binding sites observed by tiling arrays with limited replication

MOTIVATION ChIP-chip has been widely used for various genome-wide biological investigations. Given the small number of replicates (typically two to three) per biological sample, methods of analysis that control the variance are desirable but in short supply. We propose a double error shrinkage (DES) method by using moving average statistics based on local-pooled error estimates which effectivel...

متن کامل

Normalization of qPCR array data: a novel method based on procrustes superimposition

MicroRNAs (miRNAs) are short, endogenous non-coding RNAs that function as guide molecules to regulate transcription of their target messenger RNAs. Several methods including low-density qPCR arrays are being increasingly used to profile the expression of these molecules in a variety of different biological conditions. Reliable analysis of expression profiles demands removal of technical variati...

متن کامل

Temporal profile of replication of human chromosomes.

Chromosomes in human cancer cells are expected to initiate replication from predictably localized origins, firing reproducibly at discrete times in S phase. Replication products obtained from HeLa cells at different stages of S phase were hybridized to cDNA and genome tiling oligonucleotide microarrays to determine the temporal profile of replication of human chromosomes on a genome-wide scale....

متن کامل

Cell Timer/Cell Clock

Like the biological clock in the body, replication of each cell type (even different cells of the same organism) follows a timing program. Abnormal function of this timer could be an alarm for a disease like cancer. DNA replication starts from a specific point on the chromosome that is called the origin of replication. In contrast to prokaryotes in which DNA replication starts from a single ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007